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Lecture No. 9 

Example Application of the FEM using Cardinal Basis Functions 

In this example we shall use the Cardinal basis form of the interpolating functions to solve: 

𝑑𝑇

𝑑𝑡
+ 2𝑇 − 1 = 0 

initial condition 𝑇 = 1 at 𝑡 = 0. Consider the solution between 0 ≤ 𝑡 ≤ 1 

 

Develop the weighted residual formulation 

 The interior error is defined as: 

ɛ𝐼 =
𝑑�̂�

𝑑𝑡
+ 2�̂� − 1 

Note: �̂� = 𝑇𝑎𝑝𝑝 (new notation) 

Also there is no boundary error since only the i.c.’s and the function are specified. 

 We require ɛ𝐼 to be orthogonal to a set of weighting functions: 

〈ɛ𝐼, 𝑤𝑖〉𝛺 = 0,     𝑖 = 1, 𝑁 
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 For Galerkin we have 𝑤𝑖 = 𝜙𝑖. 

Thus the error constraint equation for Galerkin will be: 

∫{
𝑑�̂�

𝑑𝑡
+ 2�̂� − 1}

1

0

𝜙𝑖𝑑𝑡 = 0,     𝑖 = 1, 𝑁 

 

 Let us consider the following discretization 
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Approach 1 - Solving problem with Cardinal functions which satisfy homogenous b.c.’s 

 Let 

�̂� = 𝑇𝐵 + ∑𝑇𝑖𝛷𝑖

3

𝑖=2

 

 In order to satisfy b.c.   𝑇(𝑡 = 0) = 1 

{
𝑇𝐵(𝑡) = (

0.5 − 𝑡

0.5
)       0 ≤ 𝑡 ≤ 0.5

𝑇𝐵(𝑡) = 0                   0.5 ≤ 𝑡 ≤ 1.0
 

Thus 𝑇𝐵(𝑡 = 0) = 1.0 
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 Also define 𝛷𝑖      𝑖 = 2,3 as the standard Lagrange basis for the given element. 

 

𝛷2 =
𝑡

0.5
          0 ≤ 𝑡 ≤ 0.5  

𝛷2 =
1−𝑡

0.5
      0.5 ≤ 𝑡 ≤ 1.0  

𝛷3 = 0              0 ≤ 𝑡 ≤ 0.5  

𝛷3 =
𝑡−0.5

0.5
   0.5 ≤ 𝑡 ≤ 1.0  
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 Thus �̂� = 𝑇𝐵 + ∑ 𝑇𝑖
3
𝑖=2 𝛷𝑖 satisfies functional continuity and boundary/initial condition 

∴ �̂� = 𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3 

 Substituting into the weighted residual statement: 

∫ {
𝑑

𝑑𝑡
(𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3) + 2(𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3) − 1}

1

0

𝛷𝑖𝑑𝑡 = 0     𝑖 = 2,3 

 For 𝑖 = 2     𝛷2 

∫ {
𝑑

𝑑𝑡
(𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3) + 2(𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3) − 1}

1

0

𝛷2𝑑𝑡 = 0 

⇒ 

∫ {(
𝑑𝑇𝐵

𝑑𝑡
+ 2𝑇𝐵)𝛷2 + (

𝑑𝛷2

𝑑𝑡
+ 2𝛷2)𝛷2𝑇2 + (

𝑑𝛷3

𝑑𝑡
+ 2𝛷3)𝛷2𝑇3 − 𝛷2} 𝑑𝑡 = 0

1

0

 

Since 𝑇𝐵 is only nonzero within [0,
1

2
] 

Since 𝛷3 is only nonzero within [
1

2
, 1] 

∫ (
𝑑𝑇𝐵

𝑑𝑡
+ 2𝑇𝐵)𝛷2𝑑𝑡 + {∫ (

𝑑𝛷2

𝑑𝑡
+ 2𝛷2)𝛷2𝑑𝑡

1

0

}𝑇2 + {∫ (
𝑑𝛷3

𝑑𝑡
+ 2𝛷3)𝛷2𝑑𝑡

1

1
2

} 𝑇3 = ∫ 𝛷2𝑑𝑡
1

0

1
2

0
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 For 𝑖 = 3 

∫ {
𝑑

𝑑𝑡
(𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3) + 2(𝑇𝐵 + 𝑇2𝛷2 + 𝑇3𝛷3) − 1}𝛷3

1

0

𝑑𝑡 = 0 

⇒ 

∫ {(
𝑑𝑇𝐵

𝑑𝑡
+ 2𝑇𝐵)𝛷3 + (

𝑑𝛷2

𝑑𝑡
+ 2𝛷2)𝛷3𝑇2 + (

𝑑𝛷3

𝑑𝑡
+ 2𝛷3)𝛷3𝑇3 − 𝛷3} 𝑑𝑡 = 0

1

0

 

Since 𝑇𝐵 is only nonzero within [0,
1

2
] 

Since 𝛷3 is only nonzero within [
1

2
, 1] 

{∫ (
𝑑𝛷2

𝑑𝑡
+ 2𝛷2)𝛷3

1

1
2

𝑑𝑡} 𝑇2 +∫ (
𝑑𝛷3

𝑑𝑡
+ 2𝛷3𝑑𝑡)

1

1
2

} 𝑇3 = ∫ 𝛷3𝑑𝑡
1

1
2
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 Working out all the integrals: 

𝑖 = 2     
1

2
[−

2

3
+

4

3
𝑇2 +

4

3
𝑇3] =

1

2
(1) 

𝑖 = 3     
1

2
[0 −

2

3
𝑇2 +

5

3
𝑇3] =

1

2
(
1

2
) 

This leads to the following 2x2 system 

1

2
[

4

3

4

3

−
2

3
    

5

3

  ] [
𝑇2

𝑇3
] =

1

2
[
1 +

2

3
1

2

]  

We can now solve this system and for 𝑇2 and 𝑇3 
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 Approach 2 

Let’s now no longer define a function 𝑇𝐵 but only consider basis functions in formulating �̂� 

�̂� = ∑𝑇𝑗𝛷𝑗(𝑡)

3

𝑗=1

 

𝑇𝑗 = global value of solution at all three nodes 

𝛷𝑗 = Cardinal basis function for local Lagrange type linear interpolation 

We will actually implement the i.c./b.c. in the system of simultaneous equations once it has 

been formed 
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 Let’s define our elements over the domain: 

Use 2 elements between 0 ≤ 𝑡 ≤ 1 and use linear chapeau interpolating functions 

This defines the following 3 Cardinal functions and 3 nodes. 

 

 

 

 

 

These three functions are defined as: 

𝛷𝑖 = {

𝑡−𝑡𝑖−1

𝑡𝑖−𝑡𝑖−1
𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖

𝑡𝑖+1−1

𝑡𝑖+1−1
𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

 and zero elsewhere 
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 Thus we define the approximating sequence as: 

𝑇 ≅ �̂� = ∑𝑇𝑗𝛷𝑗(𝑡)

3

𝑗=1

 

There are 3 unknown coefficients 𝑇𝑗 at the nodes. The way we defined our functions, 𝛷𝑗, 

these coefficients equal the function value at the nodes. 

 Substituting   �̂�    into the weighted residual statement: 

∫ {
𝑑

𝑑𝑡
(∑𝑇𝑗𝛷𝑗(𝑡)

3

𝑗=1

) + 2(∑𝑇𝑗𝛷𝑗(𝑡)

3

𝑗=1

) − 1}
1

0

𝛷𝑖𝑑𝑡 = 0     𝑖 = 1,3 

⇒ 

∫ {∑𝑇𝑗 (
𝑑𝛷𝑗

𝑑𝑡
+ 2 𝛷𝑗) − 1

3

𝑗=1

}
1

0

𝛷𝑖𝑑𝑡 = 0     𝑖 = 1,3 

This generates a system of equations of rank 3  
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 Let 𝑖 = 1 

∫{𝑇1 (
𝑑𝛷1

𝑑𝑡
+ 2𝛷1) + 𝑇2 (

𝑑𝛷2

𝑑𝑡
+ 2𝛷2) + 𝑇3 (

𝑑𝛷3

𝑑𝑡
+ 2𝛷3) − 1}𝛷1𝑑𝑡 = 0

1

0

 

We note that 𝛷1 = 0 for 𝑡 >
1

2
 and also 𝛷3 = 0 for 𝑡 ≤

1

2
 (thus the third term drops 

entirely): 

[
 
 
 
 

∫ (
𝑑𝛷1

𝑑𝑡
+ 2𝛷1)

1
2

0

𝛷1𝑑𝑡

]
 
 
 
 

𝑇1 +

[
 
 
 
 

∫(
𝑑𝛷2

𝑑𝑡
+ 2𝛷2)𝛷1𝑑𝑡

1
2

0
]
 
 
 
 

𝑇2 =

[
 
 
 
 

∫1𝛷1𝑑𝑡

1
2

0
]
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Following similar procedures for i = 2 and 3 leads to the following system of equations: 

[
 
 
 
 
 
 
 
 
 
 
∫ (

𝑑𝛷1

𝑑𝑡
𝛷1 + 2𝛷1𝛷1) 𝑑𝑡

1
2⁄

0

∫ (
𝑑𝛷2

𝑑𝑡
𝛷1 + 2𝛷2𝛷1) 𝑑𝑡

1
2⁄

0

0

∫ (
𝑑𝛷1

𝑑𝑡
𝛷2 + 2𝛷1𝛷2) 𝑑𝑡

1
2⁄

0

∫(
𝑑𝛷2

𝑑𝑡
𝛷2 + 2𝛷2𝛷2) 𝑑𝑡

1

0

∫(
𝑑𝛷3

𝑑𝑡
𝛷2 + 2𝛷3𝛷2) 𝑑𝑡

1

1
2⁄

0 ∫(
𝑑𝛷2

𝑑𝑡
𝛷3 + 2𝛷2𝛷3) 𝑑𝑡

1

1
2⁄

∫(
𝑑𝛷3

𝑑𝑡
𝛷3 + 𝛷3𝛷3) 𝑑𝑡

1

1
2⁄ ]

 
 
 
 
 
 
 
 
 
 

 

∙ [
𝑇1

𝑇2

𝑇3

] =

[
 
 
 
 
 
 
 
 
 
 
∫ 1 ∙ 𝛷1𝑑𝑡

1
2⁄

0

∫1 ∙ 𝛷2𝑑𝑡

1

0

∫1 ∙ 𝛷3𝑑𝑡

1

1
2⁄ ]
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The matrix will not be symmetrical due to the nature of the first derivative operator (since L 

is not self adjoint). Evaluating the required integrals leads to: 

1

2

[
 
 
 
 
 −

1

3

4

3
0

−
2

3

4

3

4

3

    0 −
2

3
    

5

3]
 
 
 
 
 

[
𝑇1

𝑇2

𝑇3

] =
1

2

[
 
 
 
 
1

2
1
1

2]
 
 
 
 

 

Equation 1 is associated with node 1 

Equation 2 is associated with node 2 

Equation 3 is associated with node 3 
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 However our i.c. states that 

𝑇(𝑡 = 0) = 1 ⇒ 𝑇1 = 1 

We now have 3 unknowns and 4 equations. We must eliminate 1 equation. The logical 

and best choice is to eliminate the equation associated with 𝑇1, the first equation. This 

leads to the following system of equations. 

 

[
 
 
 
 
    1 0 0

−
2

3

4

3

4

3

    0 −
2

3
    

5

3]
 
 
 
 

[
𝑇1

𝑇2

𝑇3

] = [

1
1
1

2

]    
→

can contract system   [
    

4

3
   

4

3

−
2

3
   

5

3

] [
𝑇2

𝑇3
] = [

1 +
2

3
1

2

] 

This system of equations is identical to those found in approach 1!! Thus essential b.c.’s can 

be incorporated by an equation substitution procedure. 

 Thus it’s very easy to treat function specified boundary conditions such that they are exactly 

satisfied.  

 Solving the system of equation: 

[
𝑇1

𝑇2

𝑇3

] = [
1.000
0.678
0.571

] 
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 Problems regarding programming convenience when using Cardinal basis occur when: 

1. Using higher order basis, the number of nodes over which they are defined increases and 

 varies depending on the functions. We must determine where which function is 

    identically defined as zero. This is quite cumbersome. 

2. Working in higher spatial dimensions, the nodal and element connectivity becomes much 

 more complex. 
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1-Dimension 

Each element has 2 adjacent elements (and chapeau functions are defined over only 2 

elements and 3 nodes). 

 

 

 

2-Dimensions 

 

     Cardinal functions for 1 node extends over 6 elements and 7 total  

      nodes. 

      They are zero elsewhere 

 

 Thus integration in the global domain becomes much more difficult. 

 To prevent the programming complexities associated with cardinal basis functions, we shall 

consider the elements separately (i.e. not considering the other elements) and work with 

localized (or elemental and not Cardinal) functions.  
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 The elements are then joined together such that the necessary continuity conditions are 

satisfied. Finally global b.c.’s are enforced. 

 Recall that Cardinal basis were formed by adding individual localized element functions 

together and taking into account continuity. However working on an elemental basis we can 

really do the same thing. 

 

 

 

 

 

 

 

 

 

 

 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  9      P a g e  18 | 30 
 

Approach 3 

 Use a localized formulation and implement 𝐶0 functional continuity constrains in the 

“global matrix assembly” process 

 This is FEM using Localized Basis Functions 

 We now consider our two elements separately. Each has 2 localized interpolating functions 

associated with it. 

 The 2 functions 𝜙𝑖
(𝑛)

 are defined identically for all elements (at least on a local coordinate 

system). 
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 Localized functions are zero everywhere except within a given element. For all elements n. 

(Note n will represent the element number) 

𝜙1
(𝑛)

=
1

2
(1 − 𝜉) 

𝜙2
(𝑛)

=
1

2
(1 + 𝜉) 

and 

�̂�(𝑛) = ∑𝑇𝑖
(𝑛)

𝜙𝑖
(𝑛)

2

𝑖=1

 

 Thus for each element we have 2 unknown nodal coefficients, 𝑇1
(𝑛)

, 𝑇2
(𝑛)

. The unknowns 

are localized (i.e., one set for each element). We’ll take care of functional continuity later. 

The weighted residual statement now becomes: 

∑ ∫ {
𝑑�̂�(𝑛)

𝑑𝑡
+ 2�̂�(𝑛) − 1}

𝛺𝑒𝑒𝑙

𝜙𝑖
(𝑛)

𝑑𝑡 = 0     𝑖 = 1,2 
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 We must: 

 Consider each element separately and perform the weighting associated with the 

element functions. 

 Sum up over the domain and take into account functional continuity. 

 

 Element 1 (n = 1) 

∫{
𝑑�̂�(1)

𝑑𝑡
+ 2�̂�(1) − 1}𝜙𝑖

(1)
𝑑𝑡 = 0     𝑖 = 1,2

1
2

0

 

However we want to work in localized coordinates ξ. We found that the appropriate 

transformation for derivatives was: 

𝑑�̂�(𝑛)(𝑡)

𝑑𝑡
=

𝑑�̂�(𝑛)(ξ)

𝑑ξ

𝑑ξ

𝑑𝑡
=

2

∆𝑡(𝑛)

𝑑�̂�(𝑛)(ξ)

𝑑ξ
 

where ∆𝑡(𝑛) = global length of element n 

Furthermore: 

𝑑𝑡 =
∆𝑡(𝑛)

2
𝑑ξ 
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and the limits change to: 

∫ → ∫

+1

−1

1
2

0

 

Thus in local coordinates for element n = 1: 

∆𝑡(1)

2
∫ {

2

∆𝑡(1)

𝑑�̂�(1)

𝑑ξ
+ 2�̂�(1) − 1}𝜙𝑖

(1)(ξ) 𝑑ξ = 0     i = 1,2

+1

−1

 

However we recall that 

�̂�(1) = 𝑇1
(1)

𝜙1
(1)

+ 𝑇2
(1)

𝜙2
(1)

 

Substituting we have: 

∆𝑡(1)

2
∫

{
2

∆𝑡(1)
(𝑇1

(1) 𝑑𝜙1
(1)

𝑑ξ
+ 𝑇2

(1) 𝑑𝜙2
(1)

𝑑ξ
) + 2 (𝑇1

(1)
𝜙1

(1)
+ 𝑇2

(1)
𝜙2

(1)
) − 1}𝜙𝑖

(1)
𝑑ξ = 0     

 i = 1,2

+1

−1

 

This leads to a 2 x 2 system of equations: 

1

2
[
−

1

3

4

3

−
2

3

5

3

] [
𝑇1

(1)

𝑇2
(1)

] =
1

2
[

1

2
1

2

] 
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 Element 2 (n=2) 

    Following the same procedure, we find that for element 2: 

1

2
[
−

1

3

4

3

−
2

3

5

3

] [
𝑇1

(2)

𝑇2
(2)

] =
1

2
[

1

2
1

2

] 

 Now we must perform the global summation(∑𝑒𝑙 ) in addition to accounting for inter-

element functional continuity. First we relate local unknowns to global unknowns. 

 

     local global

𝑇1
(1)

𝑇1

𝑇2
(1)

𝑇2

𝑇1
(2)

𝑇2

𝑇2
(2)

𝑇3

 

 

Note that 𝑇2
(1)

= 𝑇1
(2)

= 𝑇2 represent the same functional value at the same node. 
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 Adding each local entry into the appropriate global location we have: 

1

2

[
 
 
 
 
 −

1

3

4

3

−
2

3
(
5

3
−

1

3
)

4

3

−
2

3
   

5

3 ]
 
 
 
 
 

[
𝑇1

𝑇2

𝑇3

] =
1

2

[
 
 
 
 
 

1

2
1

2
+

1

2
1

2 ]
 
 
 
 
 

 

This is the same matrix as was found with the cardinal formulation, only it’s much easier to 

assemble it (just loop through all the elements in the grid). Now we set b.c.’s and solve 

 

Notes on the integrations involved 

 Typically we can develop general algebraic expressions for each elemental matrix and 

elemental load vector for each element which depend only on element geometry and 

material properties. 

 As complexity and/or interpolation order increases it may be simpler to use numerical 

integrators. 

 Also we like our programs to allow for the use of any order interpolation. It’s much 

easier to use numerical integrators to accomplish this. 
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Summary Notes on Global vs Local Expansions 

    In solving 
𝑑�̂�

𝑑𝑡
+ 2�̂� − 1 = 0          𝑇(𝑡 = 0) = 𝑇∗ (specified i.c.) 

    we have so far applied 3 approaches 

 

Approach 1: We developed a global expansion (using Cardinal functions) and properly define 

a boundary function prior to formulating the weighted residual equation 

�̂� = 𝑇𝐵 + ∑𝑇𝑗𝛷𝑗

3

𝑗=2

 

𝑇𝐵 = 𝑇∗𝛷1 

Thus 𝑇𝐵 satisfied the i.c. and 𝛷𝑗      𝑗 = 1,2   satisfy the homogeneous b.c.’s. Now plug through 

weighted residual formulation. 
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Approach 2: Develop global expansion which does not account for i.c.’s. Plug through w.r. 

formulation, then form matrix system, then at the very end enforce the i.c.’s. 

 

�̂� = ∑𝑇𝑗

3

𝑗=1

𝛷𝑗 

⇒ 

[

∙ ∙ ∙
∙ ∙ ∙
∙ ∙ ∙

] [
𝑇1

𝑇2

𝑇3

] = [

∙
∙
∙
] 

Then define 𝑇𝐵 = 𝑇1𝛷1 = 𝑇∗𝛷 by enforcing 𝑇1 = 𝑇∗ 

Thus we’ve really reduced the number of unknowns to only two ⇒ therefore we must reduce 

the number of constraint equations !!!   

We must eliminate the first orthogonality constraint equation by in arrears setting 𝑊1 = 0 ⇒ 

thereby eliminating 1st equation and one of the constraint equations!  

Now we have the correct number of constraint equations and unknowns 

∴ Keep �̂� = ∑ 𝑇𝑗𝛷𝑗
3
𝑗=1   and we in arrears set �̂� = 𝑇∗𝛷1 + ∑ 𝑇𝑗𝛷𝑗

3
𝑗=2  
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Approach 3: In this approach we just formulated 2 localized problems and implemented 

seemingly separate w.r. formulation. Then we assembled them into a global system 

 In element 1 

�̂�1 = 𝑇1
1𝜙1

1 + 𝑇2
1𝜙2

1 

 

〈ɛ𝐼 , 𝜙𝑗
1〉𝛺𝑒𝑙1

= 0          𝑗 = 1,2 

 

[
∙ ∙
∙ ∙] [

𝑇1
1

𝑇2
1] = [

∙
∙] 

 

 In element 2 

�̂�2 = 𝑇1
2𝜙1

2 + 𝑇2
2𝜙2

2 

 

〈ɛ𝐼, 𝜙𝑗
2〉𝛺𝑒𝑙2

= 0          𝑗 = 1,2 

 

[
∙ ∙
∙ ∙] [

𝑇1
2

𝑇2
2] = [

∙
∙] 
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Now we can globalize the variables (i.e. enforcing functional continuity) 

 

𝑇1
1 → 𝑇1  

𝑇2
1 → 𝑇2  

𝑇1
2 → 𝑇2  

𝑇2
2 → 𝑇3  

Finally we can sum into a global system 
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Approach 4: Let’s work out approach 3 in a little more detail 

First we define the approximation as the sum over the element of local expansion 

�̂� = ∑ ∑𝑇𝑖
𝑘𝜙𝑖

𝑘

2

𝑖=1

𝑀

𝑘=1

 

�̂� = ∑(𝑇1
𝑘𝜙1

𝑘 + 𝑇2
𝑘𝜙2

𝑘)

𝑀

𝑘=1

 

Note M = # elements and we assume linear bases locally over each element k 

Let’s worry about enforcing i.c.’s (or b.c.’s) at the very end of the problem (like we did in #2 

and #3) 

Define weighted residual statement 

ɛ𝐼 =
𝑑�̂�

𝑑𝑡
+ 2�̂� − 1 

Since we currently have 2M unknown coef.’s, we need to enforce 2M constraints 

〈ɛ𝐼 , 𝜙𝑗
𝑘〉𝛺 = 0          𝑗 = 1,2;  𝑘 = 1,𝑀 

⇒ ∫ {
𝑑

𝑑𝑡
∑(𝑇1

𝑘𝜙1
𝑘 + 𝑇2

𝑘𝜙2
𝑘)

𝑀

𝑘=1

+ 2 ∑(𝑇1
𝑘𝜙1

𝑘 + 𝑇2
𝑘𝜙2

𝑘) − 1

𝑀

𝑘=1

} 𝜙𝑗
𝑘𝑑𝑡 = 0     𝑗 = 1,2     𝑘 = 1,𝑀

𝛺
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Since for the ivp we’ve built in the time dependence into the bases 

∫ {∑ (𝑇1
𝑘
𝑑𝜙1

𝑘

𝑑𝑡
+ 𝑇2

𝑘
𝑑𝜙2

𝑘

𝑑𝑡
) + 2

𝑀

𝑘=1

∑(𝑇1
𝑘𝜙1

𝑘 + 𝑇2
𝑘𝜙2

𝑘) − 1

𝑀

𝑘=1

}

𝛺

𝜙𝑗
𝑘𝑑𝑡 = 0     𝑗 = 1,2     𝑘 = 1,𝑀 

Now we note that we must take care of functional continuity constraints. Thus we must 

enforce 

𝑇2
1 → 𝑇1

2 

𝑇2
2 → 𝑇1

3 

𝑇2
3 → 𝑇1

4 

However as we enforce each inter-element constraints, we must eliminate/modify a constraint 

equation. We also note that since the weighting functions must match the bases, thus we must 

actually consolidate select weighting functions. 

Thus on inter-element boundaries 

For elements 1/2 

〈ɛ𝐼 , 𝜙2
1〉𝛺 = 0

〈ɛ𝐼 , 𝜙1
2〉𝛺 = 0

} ⇒ 

〈ɛ𝐼 , 𝜙2
1 + 𝜙1

2〉𝛺 = 0 ⇒ 

〈ɛ𝐼 , 𝜙2
1〉𝛺1

+ 〈ɛ𝐼, 𝜙1
2〉𝛺1

= 0 
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For elements 2/3 

〈ɛ𝐼 , 𝜙2
2〉𝛺 = 0

〈ɛ𝐼 , 𝜙1
3〉𝛺 = 0

} ⇒ 

〈ɛ𝐼 , 𝜙2
2 + 𝜙2

3〉𝛺 = 0 ⇒ 

〈ɛ𝐼 , 𝜙2
1〉𝛺2

+ 〈ɛ𝐼, 𝜙1
3〉𝛺3

= 0 

etc. 

The first and last nodes stay the same 

〈ɛ𝐼, 𝜙1
1〉𝛺1

= 0 

〈ɛ𝐼, 𝜙1
𝑀〉𝛺𝑀

= 0 

 

(Note that I’ve accounted for where the bases are equal to zero) 

This then explains why we add equations at each interface node together. 

 


